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Risk-taking plants
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Water scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in
plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water
potential (Yleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as
necessary to limit transpiration. Anisohydric plants have more variable Yleaf and keep their stomata open and
photosynthetic rates high for longer periods, even in the presence of decreasing leaf water potential. This risk-taking
behavior of anisohydric plants might be beneficial when water is abundant, as well as under moderately stressful
conditions. However, under conditions of intense drought, this behavior might endanger the plant. We will discuss the
advantages and disadvantages of these two water-usage strategies and their effects on the plant’s ability to tolerate
abiotic and biotic stress. The involvement of plant tonoplast AQPs in this process will also be discussed.

Isohydric vs. Anisohydric Plant Behavior

Different regions of the world are characterized by different
climatic and environmental conditions, which have led to the
development of a wide range of plant adaptation mechanisms and
survival strategies. Both anisohydric and isohydric behaviors have
been observed in numerous plant groups1 as well as within
individual species, such as grapevine (Vitis vinifera2) and poplar
(Populus3), suggesting that the availability of water in the natural
environment and dynamic plant-environment relations influence
these differences in behavior.4-7 A constant midday leaf water
potential (Yleaf), as a characteristic of isohydric plants, is the result
of strict and conservative water-balance management, in which
the loss of water is limited by the reduction of stomatal
conductance. However, our current understanding of the
molecular and cellular factors responsible for these two types of
plant behaviors is limited. Evidently, differences in the behavior of
isohydric and anisohydric plants are due to differences in the
sensitivity of their respective guard cells to a critical Yleaf

threshold. As a result, under optimal conditions and mild-to-
moderate drought conditions, anisohydric plants maintain higher
stomatal conductance (gs) and CO2 assimilation (AN) than
isohydric plants and, therefore, are more productive under those
conditions.3,6,8-10

Recently, we demonstrated that the constitutive expression of a
tonoplast aquaporin (TIP AQP), SlTIP2;2, in an isohydric
tomato line led to an increase of the osmotic water permeability of
the tonoplast and extended the capacity of the vacuole for osmotic
buffering of the cytoplasm under stress conditions.8 This trans-
formation “converted” the isohydric tomato plants, so that they

exhibited anisohydric behavior, which led to greater productivity
under optimal and mild-to-moderate-drought conditions. A
similar effect has been observed for another TIP in Arabidopsis
plants.11,12 These observations raise the question of whether
anisohydric behavior should be viewed as a valuable agronomic
trait.

Effect of Anisohydric Behavior on Abiotic Stress
Resistance: A Valuable Agronomic Trait?

From the agronomic point of view, drought resistance is defined
as enhanced productivity under the examined conditions. Thus,
any innate factor that leads to an increase in crop productivity
under stressful conditions may be viewed as a valuable agronomic
trait. Due to their higher gs and AN, anisohydric crops will most
likely improve their yield under conditions of optimal to moderate
water availability.8,10 Nonetheless, there is a need to determine the
soil moisture threshold below which anisohydric plants lose their
agronomic advantage. To answer this question, one must take in
consideration the plant’s ability to recover from the stressful
period (i.e., its embolism and desiccation resistance) and return to
its pre-stress productivity rate. Several studies have reported that
anisohydric plants are resistant to cavitation,13-18 suggesting that
these plants may recover rapidly following exposure to drought.
These findings support the hypothesis that anisohydric behavior
contributes to agronomic drought resistance. Observations of our
converted TIP2;2 tomato plants also support this hypothesis.

TIP2;2 plants maintained significantly higher performance
(i.e., harvest index) even when received 50% deficit irrigation, as
long as they were watered frequently. Interestingly, these plants
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out-performed those treated with the full irrigation regime, as
long as they were not irrigated very frequently (i.e., irrigation once
a week, which exposes the plants to longer periods of drought)
eliminate their advantage and emphasizing the vacuole “reservoir”
role in the short-term.8

A similar trend was reported in a comparison of the drought
resistance of isohydric and anisohydric grass species (Miscanthus
sinensis and Eragrostis spectabilis respectively), in which better
performance of Eragrostis spectabilis was observed under favorable
to moderate moisture conditions, but little difference was noted
when the plants were subjected to severe drought stress.10 This
demonstrates that the anisohydric plant is an “opportunist risk-
taker” whose behavior is beneficial under conditions of minimal
to moderate stress, but will confer no benefit under conditions of
prolonged stress.

This perception can explain the disadvantage of some aniso-
hydric grapevines (Vitis vinifera), such as cv Chardonnay and cv
Shiraz, under drought conditions.18,19 In general, anisohydric
grapevines were reported to have lower midday water potentials
under stressful conditions, but did not have any advantage over
isohydric grapevines in terms of gs or water use efficiency.20 This
suggests that isohydric grapevines may have an advantage in dry
ecosystems. Typically, grapevines are grown without any
irrigation, which leaves them exposed to a wide variety of soil
moisture levels. This, might explain the contradictory reports of
isohydric and anisohydric behavior among plants of the same
genotype.21 In addition, recent studies have shown that grapevines
could regulate there isohydricy during the growth season and
switch from isohydric to anisohydric with varying soil moisture.
The authors contribute the changes to hydraulic/hormone
signaling.22-24 This new mechanism could be an interesting view
of how to examine the isohydric/anisohydric behavior.

Interestingly, the anisohydric strategy has been reported to be
beneficial for survival during long periods of drought. In recent
studies, about 75% of the examined juniper trees (Juniperus
monosperma), which are anisohydric, survived 24 mo of drought,
as compared with 5% of the isohydric pinyon trees (Pinus
edulis).25,26 The fact that the juniper trees could maintain gas
exchange at a significantly lower leaf water potential than the
pinyon trees9,13 suggests that, at least for this species under these
conditions, the risk of hydraulic failure and desiccation is
worthwhile. There are additional examples of tree species that
seem to benefit from their anisohydric behavior. The anisohydric
white oak (Quercus alba L.) has been shown to survive drought
better than the isohydric black walnut (Juglans nigra L.).27 In
another study, the anisohydric Eperua falcata was found to be less
sensitive to soil drought and atmospheric drought than the
isohydric Diplotropis purpurea.28

Nevertheless, we find that defining plant water-balance
regulation solely in terms of Yleaf regulation is incomplete.
After all, a plant’s primary necessity is to maintain its water
content so as to maintain its biochemical functionality. For this
reason, definitions of isohydric vs. anisohydric behavior should
include the regulation of plant relative water content (RWC). We
suggest that the stable Yleaf that is typical of isohydric plants is a
symptom of the maintenance of high RWC. For this reason, we

expect isohydric plants to regulate RWC more strictly than Yleaf.
To test this assumption, we monitored the RWC and Yleaf of our
anisohydric tomato TIP2;2 plants and a corresponding isohydric
control as the plants were exposed to drought stress. We observed
that the isohydric plants maintained their RWC more strictly than
their Yleaf (Fig. 1). The mechanism regulating this hierarchy is
not clear. We suggest that cell-wall elasticity (ε) might play a role.
Plants with high ε are more sensitive to water loss and translate
minimal RWC loss into maximal Yleaf change.29 ε may play a
central role in the sensing of the water-loss signal and its
conversion into a water-potential signal that can be sensed by the
stomata, leading to their closure (i.e., cell walls with higher ε will
be more sensitive to small changes in water-content differences,
resulting in the more rapid closure of the stomata). Furthermore, ε
could act to maintain relative water content at the turgor-loss
point and prevent cell dehydration.30

Isohydric and Anisohydric Effect
on Biotic Stress Resistance

The role of anisohydric behavior in the response of plants to biotic
stress is not well understood. Similar to responses to abiotic stress,
biotic stress response is a complex trait involving multiple
mechanisms, including changes in phytohormones and protein

Figure 1. Comparison of midday leaf water potential (Yleaf) and leaf
relative water content (RWC) of Tom-SlTIP2;2 and control plants at
different levels of relative soil volumetric water content (VWC). Two
independent Tom-SlTIP2;2 lines (Sade et al., 2009)8 and control plants
were subjected to drought and the decreasing soil VWC was monitored
using a soil moisture probe (10HS, Decagon). (A) Midday leaf Yleaf and
(B) leaf RWC were measured at three different VWC levels (100%,~50%,
~30%) using a pressure chamber (ARIMAD3000, MRC). Different letters
above the columns represent significant differences (Tukey-Kramer test,
p , 0.05). Data points are means ± SE (n = 6).
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interactions.31 Moreover, both types of stress lead to similar
physiological responses, such as decreased gs and decreased
AN,32,33 suggesting that anisohydric plants might be more tolerant
of biotic stress as a result of their greater carbon surpluses.5

Another example of an association between anisohydric behavior
and biotic stress resistance may be seen in the ABA-deficient
tomato mutant-sitiens (Lycopersicon esculentum Mill. cv
Moneymaker34). This mutant could be considered to be the
ultimate anisohydric plant as it maintains high stomatal
conductance at all times.35 Indeed, these plants were reported to
be highly resistant to the necrotrophic fungus Botrytis cinerea.36

Yet, it was suggested that this resistance might not be related to
carbohydrate balance, but rather to the relatively high levels of
salicylic acid present in these mutants (probably as a feedback
response to the low levels of ABA, since salicylic acid is an
antagonist of ABA37 and known to play a role in plant resistance
to biotic stress38).

When our anisohydricTIP2;2 plants were inoculated with
Botrytis cinerea, they exhibited a higher level of disease resistance
than the isohydric control (Fig. 2). Moreover, the TIP2;2 plants
were also more tolerant to tomato yellow leaf curly virus (TYLCV;
unpublished data, D. Sade and N. Sade) than the control. These
results support the suggestion that anisohydric plants may be
more tolerant of biotic stress, but we still do not understand
the mechanism of this tolerance. It has been suggested that
isohydric species have higher levels of ABA than anisohydric
species.1,27,39,40 This suggests that anisohydric resistance to biotic
stress may be related to an ABA-salicylic acid-regulated plant
defense mechanism.

We would like to suggest an additional explanation for the
resistance of anisohydric plants to biotic stress. We suggest that
the lower leaf RWC that is characteristic of anisohydric plants8

(and Fig. 1) inhibits the replication and movement of biotic
agents such as bacteria and fungus through the apoplast,41 as well
as the movement of virions through the plasmodesmata.42 The
identification of the origin of this observed resistance to biotic
stress is a matter for further research.

Concluding Remarks

Additional research is needed to increase our understanding of the
molecular basis for the different strategies that plants use to
regulate their water balance. The identification of specific AQP
genes with defined roles in the plant’s water-budgeting activities

will enhance our understanding of stomatal regulation and
provide novel molecular tools for improving plant resistance to
many other types of abiotic and perhaps even biotic stress, thereby
contributing to our future food, feed and fiber security. It is
important that any claim for behavior-related resistance or
tolerance of a crop to stress take into consideration the stress
level, the duration of the exposure to the stress and the rate at
which the plant recovers from this exposure.
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Figure 2. Inoculation of detached leaves with the necrotrophic fungus
Botrytis cinerea. (A) Leaves from Control plants (n = 19) and (B) leaves
from two independent transgenic Tom-SlTIP2;2 lines (n = 22) were
inoculated with 5 ml of a solution containing 1,500 spores/ml. After
inoculation, plants were sealed in plastic bags and transferred to a
growth chamber for 4 d. Disease was evaluated as . 50% of leaf surface
(infected) or , 50% of leaf surface (uninfected) and these data are
presented (C and D) as relative incidence of infected (black) and
uninfected (gray) leaves among the total number of inoculated leaves.
**Significant difference (comparisons of two ratios binomial, p , 0.01).
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